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Viscoelastic and Rheological Behavior of 
Concentrated Colloidal Suspensions ~ 

I. M.  de Sehepper  e ~ and E. G. D. Cohen 4 

Molecular approaches are discussed to tile densil~ (4,1. ~iscoelastic I,,JI. and 
rheological 1;') behavior of Ihe viscosity q(4*. f'~. 7) of concenlrated colloidal 
suspensions with 0.3 < 4' < 0.6, where ,/J is the volume fraction. ,,~ the applied fre- 
qt,enc.~, and ;' file shear rate. These dleories are based on tile calculation of the 
pair distribution ftlnction Pz( r" ~,*. ;' 1. where r is tile relative position of a pair of 
colloidal particles. Tile linear viscoelastic beha',ior ql4,. "J. ;' = (1) follov, s fronl an 
equation for Pz(r. ,,J. 71 derived from the Smolucllo~vski equalion for small 4'. 
generalized to large ~/, by introducing tile spa0al ordering and (cage) diffusion 
typical for concentrated suspensions. The rheological bella'.ior q(,/*. ~,J-O. ;') 
follows from an eqt, ation for P:lr; 71 of a dense hard-sphere fluid demed  from 
the Liouvillc equatilm. This leads Io a hard-sphere ~isco~,it.~ qh.(,/,. 71 ~shich 
yields the colloidal one ql~,~. 71 b,, tile scaling relation ql,P. 71 q,,_qt,,(,/,. 71 ~h,. 
where ~l,, is the solvent ,.iscosit.,,. qu ix the dilulc hard-sphere (Bohzmann) 
viseosit.',, and the ;"s are appropriately scaled, q(,/,, t,J) and Pll,b. 7) agree well 
v. ilh experiment. A tmified theoo for q(,/,. ,.J. ;'~ is clearl.~ needed and pursued. 
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I. I N T R O D U C T I O N  

In t h i s  p a p e r  we  a r e  i n t e r e s t e d  in t he  s h e a r  v i s c o s i t y  q(~ .  ¢,~, ;' ) o f  n e u t r a l  c o n -  

c e n t r a t e d  c o l l o i d a l  s u s p e n s i o n s ,  n o t  o n l y  in its d e p e n d e n c e  o n  the  v o l u m e  

f r a c t i o n  ~, b u t  e s p e c i a l l y  in its d e p e n d e n c e  o n  an  i m p o s e d  f r e q u e n c y  ~,~ 

( v i s c o e l a s t i c  b e h a v i o r  ) o r  o n  a n  i m p o s e d  s h e a r  r a t e  ;' ( r h e o l o g i c a l  b e h a v i o r  ). 

W e  d i s c u s s  t w o  t h e o r e t i c a l  a p p r o a c h e s  a n d  c o m p a r e  t h e m  w i t h  e x p e r i m e n t a l  

r esu l t s .  In  b o t h  t h e o r e t i c a l  a p p r o a c h e s  h y d r o d y n a m i c  i n t e r a c t i o n s  a r e  
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neglected. One approach is based on the Smoluchowski equation for the 
pair distribution function of a colloidal suspension and allows a discussion 
of the viscoelastic behavior; the other is based on the Liouville equation for 
a fluid of hard spheres and allows, by a scaling procedure, a discussion of 
the rheological behavior of concentrated colloidal suspensions. We only 
sketch the derivations and refer to the literature for details. In Section 2 we 
discuss the viscoelastic behavior, in Section 3 the rheological behavior, and 
in Section 4 we comment on the results. 

2. VISCOELASTIC BEHAVIOR 

Starting from the Smoluchowski equation for N neutral spherical 
Brownian particles without hydrodynamical interactions in a solvent under 
an imposed time-dependent shear rate ; ,( t)= 7 exp( i¢o t )  and integrating this 
equation over the positions of all particles but two, one obtains an equa- 
tion for the nonequilibrium pair distribution function P_,(R:r,~b, co, 7, t) 
involving the three-particle distribution function. Here R = (r~ + r_,)/2 is the 
center of mass and r = r ~ - r ,  the relative location, with ri the position of 
particle i ( i=  1, 2). Neglecting the terms that involve the three-particle dis- 
tribution function and ignoring spatial inhomogeneity (i.e., the dependence 
on R), one arrives at the equation [ I -4 ] .  

~ + 2/~DoV • F(r) - 2D.V 2 + ";ei'"'x ? 6P(r; ~, ~,), 7, t) 

= - T e " " ' x :  - g[r; q~) (1) 
('.V 

Here r = (x ,  y ,  z) ,  6Pit: q~, u), 7, t )=  P2(r; ¢~, co, 7, t ) - g ( r ;  ~), with g(r; ~ ) =  
P2(r: b, co = 0, 7=  0, t) the equilibrium radial distribution function, F(r) is 
the force between two particles, [,~ = 1/k B T, with T the temperature and k~ 
Boltzmann's constant, and Do is the Brownian (Stokes Einstein) diffusion 
coefficient of a colloidal particle in a dilute suspension. Taking a Fourier 
transform of Eq. (1 } with respect to r, one can derive an equation for the 
deviation 6S(k: q~, 7, ~o, t)  of the structure factor from equilibrium: 

6S(k; ~, co, 7, t) = S(k; q~, co, 7, t)  - S ( k :  q6) (2) 

where S ( k : q ~ ) = S ( k : q k  ~ o = 0 , 7 = 0 ,  t ) i s  the equilibrium static structure 
factor [-i.e., the spatial Fourier transform of g(r; ~b)]. We are particularly 
interested in values of~b and k for which S ( k ;  (~) has a sharp maximum, i.e., 
in 0.3 < q~<0.6 and k ~ k *  with k * a = 2 n .  Here a is the diameter of the 
colloidal particles and ~b = rcno-3/6, the volume fraction with n the number 
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density. This sharp maximum of Slk;q~) at k = k *  reflects the highly 
ordered state of the colloidal particles in the suspension on a length scale 
,;.*= 27r/k* = rr in cages, i.e., each particle finds itself in a cage, formed by 
its nearest neighbors, out of which it can escape only with difficulty. Then 
one derives from Eq. 11 ) the following equation for 6S(k; ~, o~, 7, t) [5] :  

O 2 " ,i'"'k ? ] t ) = " , i  ..... ? ,'e ,.~, 1 6 S ( k ; q ~ , ~ o , ,  ', ,~ k,.~. S(k;q~)(3) ~+ r~(k; q~) c h , . j  

The only dynamical  fluid property in Eq. (3) is the cage diffusion time 
r~(k; q~), which determines the rate at which a particle can diffuse out of its 
cage. It is a collective diffusion process involving not only the motion of the 
particle inside the cage, but also that of its neighbors, which form the cage. 
The crucial cage diffusion time r~(k; ~b) is obtained from that of a corre- 
sponding dense fluid of hard spheres, where the particles move between 
collisions ballistically in racuo, rather than carry out Brownian motion in 
a solvent, as in a suspension (cf. Fig. 1). Although at first sight these two 
types of motions appear to be very different, a closer observation of them 
on long time scales shows that for dense fluids they are qualitatively hardly 
distinguishable, as has been noticed by L6wen et al. [6].  Quantitatively, 
they take place on very different time scales, determined, for instance, 
by their bow-density diffusion coefficients: n h~ the Boltzmann diffusion 
coefficient for a hard-sphere gas, and D.,  the Stokes-Einstein diffusion 
coefficient for a very dilute suspension, respectively. Since n h~/n i~/~.  ~ 1000 
the cage-diffusion time scales of the two fluid systems will differ by about 

Fig. I. Cage diffusion collisions of central 
particle 1. The motion of the wall particles 2 
to 7 is not indicated. For clarity the distances 
between tile hard spheres forming the cage 
have been enlarged considerably. 
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a factor of 1000, i.e., Newtonian motion proceeds on an asymptotic time 
scale similarly as Brownian motion, except a thousand times faster. 

Using this analogy, one can determine rdk;  ¢) for the concentrated 
colloidal suspension from that of a dense hard-sphere fluid at the same 
volume fraction rh~lk • . . . . . . . .  ¢), by scaling, i.e., by replacing n "~3 [5] by Dn [7]: 

r~(k'q~)= ~ . . . . .  I~, (4) 

so that 

r~.(k: ¢ ) =  rJ!~(k, ¢: D..) 

where ~l~(k'¢: h~ D~ ) follows from kinetic theory [8 ] :  

hs 2 l Di3 k 
(5) 

hs .. . h=, r,. (k, ¢, DI~ ) g ( r=  a; ¢) S(k: ¢ ) [ I  -./o(/, 'a)+ 2j_,(ka)] 

with./.(x) and/2(x) spherical Bessel functions and ,~(r= a; ¢) the radial dis- 
tribution function at contact for the hard-sphere fluid in equilibrium. 

Using Eq. (5) in Eq. (3). solving tile so-obtained equation for 
~$S(k: ¢, ~o. 7- t), integrating the solution over k, and then setting 7 =  0, one 
obtains for the viscoelastic behavior q(¢; c,~)= q(¢: ,), 7 =  0) [5]:  

q(¢; .))=11~+ q~[S(k: ¢): r~(k: ¢);.~] (6) 
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Fig. 2. Reduced viscosib' as a function of volume fraction for silica spheres in 
cyclohexane [9]  [filled circles), from Eq. I6) Isolid line) and from Eqs. I8) and [9) 
[dashed line I. 
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Here tl~ is the viscosity of the solvent and the o)-dependence of q is via ~1~, 
the correction to ~1,: due to the cage diffusion process of the Brownian 
particles in the fluid, which depends functionally on the equil ibrium static 
structure factor S(k;  ~b) and the cage diffusion time rdk;  q~). We remark the 
following: 

1. For o j=0 ,  one obtains the concentration dependence of the 
Newtonian viscosity q(~b)=q(q~;co=0). A comparison of theory 
and experiment [9] is made in Fig. 2. The agreement is good. 

2. For ~o:/:0, the viscosity is a complex function of ~u:q(~k,o~)= 
;/'(~k; ~,J)-hT"(q~; c,~). and in Fig. 3 the real and imaginary parts of a 
reduced viscosity q*(~;(,J)= [ q( ~: ~u )-- q( 4~; :r ) ] /[  q( qS; O ) - q( q~; :r_ )] 
are plotted for 0.3 < ~ < 0.6 as a function of a reduced frequency 
cu*=~or,(~b) for a number of concentrations. Here r,(~b)-~r,,/4 
[5], where rp=cr2/4Do is the P6clet time. We note in Fig. 3, 
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Fig. 3. Reduced complex shear viscosity q*f~..J) as a 
function of .Jr,(~). The data points refer to silica spheres in 
cyclohexane [9 ]  (0 .3<~<0.6) .  The lull curves are from 
theory for 4,=0.4, 0.5, and 0.55 [Eq. 16)] Ihardly dis- 
tinguishable I. 
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for both theory and experiment [9],  (a) the independence of 
q*(¢k:(o) of ~ and (b) lim ........ Re q*(~ ; (o )= l im ....... lm q*(¢;(o) 
= 0.675((orl(¢k)) 12 

Although the rheological behavior q(~: ;.) = ~l(q~: (o =0;  ;') can also be 
derived from Eq. (3), we postpone its discussion to the next section. 

3. R H E O L O G I C A L  B E H A V I O R  

Starting from the Liouville equation for N hard spheres under an 
imposed time-dependent shear rate , ' ( t )= , ' exp  ~ .... and integrating this 
equation over the momenta of all the particles and the positions of all the 
particles but two, one obtains an equation for the nonequilibrium pair 
distribution function P ~ ( R ,  r:~, (o, ,'. t) involving tile three-particle dis- 
tribution function. Neglecting the terms that involve the latter and ignoring 
spatial inhomogeneity, one finds an equation for the deviation 
6Sh'(k: ~]L (,), ;'. t), defined as in Eq. (2), which reads i-10, 11 ] 

- -  . ,  ~t~,~t  . . ,  = t , . , t  k o h s ,  i .  
+rh~lk;~b ) ~( k ,  6Sh~(k: (k, (,), ,, t) ,'e ,.,-=;--a ttt';~b) (7) 

c - ( ' K ~ .  

This equation is the same as Eq. (3), except that r~(k;~k) in Eq. (3) is 
replaced in Eq. (7) by Tl~'(k:q~) of Eq. (5). For a stationary state, where 
(,) = 0, a solution of this equation leads, after integration over k, to an 
expression for tile rheological viscosity qh~((/~:;')=uh~((b:~o=O:;' ) of a 
dense fluid of hard spheres of tile form [5, 10] 

qh~(q~:;,)=q~(~b)+rh~rS'l"k T h" (8) 

where Ilh~(~b) is the viscosity of a dense hard-sphere fluid given by the 
I I i .  Enskog kinetic theory and 1~ gives the correction to q~ due to cage 

diffusion. 
In order to obtain from Eq. (8) tile corresponding values of q(~b; ?) for 

a concentrated colloidal suspension, we apply a scaling procedure to the 
relative viscosity of the colloidal suspension [12]: 

,l(,b; ,'n,) 'l"~(~: ,'~I'/) 
(9) 

Here q~" is the viscosity of a hard-sphere gas obtained from the Boltzmann 
equation [5] and rh~=37zq~{a3/(4k13T) for the hard-sphere fluid and q 
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r,  = 3rcq.a3/(4kl~ T) for the colloidal suspension, are characteristic P6clet- 
like relaxation times. We make the following remarks. 

1. For 7=0 ,  the Newtonian viscosity q(~,6,0) of the concentrated 
colloidal suspension is obtained from Eqs. (8) and (9). The result 
is shown in Fig. 2 and compares well with experiment. 

2. For 7 4= 0, Eqs. (8) and (9) give that the viscosity is a real function 
of 7 of the form 

q(¢; ;'z,,) C _  S(~k)(,,t,,), - ~ 
q*(~: ;'~")= q(~; O) 

10) 

where C is a constant, q*(4'; 7) is plotted in Fig. 4. We note (a) in 
both theory and experiment [13] a ",,-dependence ~;.~2 after (b) 
an initial small 7 behavior as q*((k; 7)=  1 -C~(~k)', ,2. The former is 
clearly shown, but the latter can only be said at present to be con- 
sistent with experiments. The theoretical values for Cj(~b) are 
somewhat smaller than those suggested by experiment, leading to 
similar but slightly displaced curves with the same slope (cf. 
Fig. 4). In fact, in Fig. 5 we plot the coefficient S(¢) in Eq. (10), 
both for the scaled-hard-sphere theory [cf. Eqs. (8) and (9)] 
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Fig. 4. Reduced shear viscosity q($,';)/q(~,O) as a function of 
reduced shear rate (;,z,j) I z for ~ = 0.45. Silica spheres in cyclohcxane 
[13] Icrosscs). Scaled hard-sphere theory [Eqs. (8) and (9)] (full 
curve). 
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Fig. 5. Reduced slopes S(q~) defined by Eq. (1()) as 
a function of ~ for silica spheres in cyclohexane 
[13] Ifilled circles) and from theory: scaled hard 
spheres, of. Eqs. 18) and 19} {solid curve): and 
Smoluchowski. of. Eq. {3) (dashed curvc). 

and as derived front the Smoluchowski equation, discussed in 
Section 2. The latter approach appears not to lead to a behavior 
consistent with experiment. 

4. CONCLUSIONS 

We mention here a few points emanating from the results given in the 
previous sections. 

1. The two essential physical features of the above-sketched two 
theoretical approaches to an understanding of the viscoelastic and 
theological behavior of concentrated colloidal suspensions are 

[al the qualitative similarity for long times, i.e., on a macroscopic 
time scale, of Newtonian and Brownian dynamics, and 

(b) the qualitative similarity of the cage diffusion process in concen- 
trated colloidal suspensions and dense hard-sphere fluids. 
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. 

(a) 

(b) 

(c) 

Problems to consider are 

the viscoelastic behavior of a concentrated colloidal suspension 
obtained by scaling [cf. Eq. (9)] from that of dense hard-sphere 
fluids derived from the Liouville equation; 

the theological behavior of concentrated colloidal suspensions 
from the Smoluchowski equation; 

that although we used the Smoluchowski theory for the colloidal 
suspensions neglecting hydrodynamical effects, we believe that 
the good agreement with experiment, at least for the viscoelastic 
behavior of neutral colloidal suspensions, implies that these 
effects are not important at high concentrations and that a 
similar good agreement would be obtained for charged colloidal 
suspensions. This would, however, obtain only, as long as the 
imposed frequencies o~ are such that they will not seriously 
distort the Debye clouds surrounding the colloidal particles. This 
implies that we conjecture--at  least for the viscoelastic behavior 
of concentrated colloidal suspensions--(i) the hard-sphere 
potential with an effective hard-sphere diameter a determined 
from the experimental S(k} [7]  can be a good approximation for 
the Debye-Hi.ickel interaction potential, and (ii) hydrodynamic 
effects largely cancel each other at high concentrations. Previous 
work on the self-diffusion coefficient of concentrated colloids 
seem to corroborate this conjecture [14]. 

3. There appears to be an interesting similarity between the oJ- and 
the ",,-dependence of q(~b; ~u: 7) which we intend to explore further. 

4. What is the connection between the two theoretical approaches, 
discussed in Sections 3 and 4, i.e., Why are the Smoluchowski and the 
(scaled) Liouville equation results for concentrated colloidal suspensions so 
similar ? 
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